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SECTION I
INTRODUCTION

A complete image processing language in the form
of an image processing algebra is presented herein. It

enables image and signal processing algorithms to be
written in terms of seven primitive or basis operators.

Each of the seven basis operators are induced from the

underlying algebraic structures of the domain or range

spaces.

The inducement methodology developed in the report

is an application of a general theory of inducement which

is not restricted to image processing. However, the bulk
of the report is concentrated on the development of a

digital image algebra. In terms of this algebra,

operators such as dilation and convolution, which are
often defined pointwise, possess closed-form expressions

as strings of the seven basic operators.

The image algebra developed herein has provided a

universal environment in which to express image
processing algorithms. Moreover, such an environment

illustrates standardization of algorithm specification.

The simplicity of the algebra is illustrated by
the manner in which a programming language can be based

upon the seven basis operators of the digital image

algebra.



Recent results in knowledge engineering are also
discussed herein. The development of the seven basis
operators was based on the work done in Phase I of the
Image Processing Language program (Contract

#F08635-84-C-0296) which preceded Phase II and was

reported by Singer Electronic Systems in the Image
Processing Language Final Report for Phase I dated
September 1984 - September 1985. An argument is made for
a structured approach to the development of intelligent
weapon systems, in general, and to automated image
processing algorithm development, specifically.
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SECTION II

IMAGE ALGEBRA

1. DIGITAL IMAGES

The primary goal of an image algebra is the development

of a mathematical environment in which to express the various

algorithms employed in image processing. From a practical

standpoint, this means that the algorithms should appear as

strings in an operational calculus, where each operator can

ultimately be expressed as a string composed of some

collection of elemental, or "basis" operators and where the

action of the string upon a collection of input images is

determined by function composition. For instance, rather

than defining operations such as convolution and dilation in

a pointwise manner, closed-form expressions of these

operators in terms of low-level operations that are close to

the algebraic structure of the underlying mathematical

entities upon which images are modeled are desirable.

In Reference 1, Reference 2 and Reference 3 image

processing algorithms are presented through the use of bound

matrix representation and block diagrams constructed of

various operations upon bound matrices. The intent of the

approach is to present a unified framework for the orderly

expression of the diverse algorithms that play roles in image

analysis. In essence, the block diagram technique serves as
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a univeral language in which investigators from diverse
backgrounds may find a common understanding. In this report,

the algebraic foundations of that block diagram language are
explored (although the algebraic methodology presented herein

is independent of both image processing and bound matrix
representation in particular). Speaking analogically, image

algebra is to bound matrix algebra as linear algebra is to
matrix algebra.

The formulation of a satisfactory image algebra is
actually a particular instance of a more general algebraic

problem concerning function spaces. Indeed, an image signal
is simply a function defined on a subset of some universal

set. Thus, once the function space is specified, and the

determination of the desired algebra depends on the

collection of operations induced from the structure of the
domain and range spaces. In digital image processing, the
domain space is the extent of the image and is usually

considered to be the integral lattice Z x Z. While the range

space consists of grey values, it can be represented by

either the set R of real numbers or the set .Z of integers.

Of significance is that when the underlying problem of

algebra development is viewed from the appropriate

perspective, the particulars of the subject matter involved

are of minor importance; rather, it is the methodology of
development that is paramount.

2. THE INDUCEMENT METHODOLOGY

An abstract image is defined as a function f:A 4 Y,

where A is a subset of X and X and Y are arbitrary non-empty

sets. Q then denotes the set of all images with domain space
X and range space Y. If it is then assumed that both X and Y

are algebraic structures, these structures induce



corresponding algebraic properties into the set Q: i.e.

algebraic operations are inherited in Q because of the

algebraic properties in X and Y. Inducement methodology is a

standard algebraic technique which is applied to the

development of an image and which uses simple algebraic

constructs for the purpose of processing images.

Assume Y is a group under the operation +. Then the

binary operation <+> is range induced on the function space Q

in the following manner:

If f:A 4 Y and g:B 4 Y, then we define

f <+> g: A A B 4 Y

by

(f <+> g)(x) - f(x) + g(x)

This is the standard procedure, for example, in defining

function addition where the domains need not be identical.

The inducement procedure leaves open the definition of the

intersection of the domains, and this is significant in image

processing, where many binary operations involve images with

different domains. Moreover, because the operation <+> has

been defined by inducement, the group properties of + also

induce: <+> is associative and, if the group (Y, +) is

commutative, then <+> is commutative. Although the case

where (Y, +) is a group, has been considered in detail, the

group hypothesis was assumed only for illustration. The

methodology of range inducement applies to other algebraic

structures as well.

The existence of a transformation group (G, *)

consisting of 1-1, onto mappings t: X 4 X is assumed. In

other words, if t, s: X 4 X with t, s in G, then the

composition t*s is also an element of G, and, in addition, *

l l ! |5



satisfies the group axioms. G induces a binary mapping Q x G

Q in the following manner:

if f:A -+ Y and t lies in G, then

(G)(f, t): t(A) + Yby ((Gj(f, t))(x) - f(t-1  (x))

The properties of * induce corresponding properties of (G).

For instance, the associativity of * yields

((G)(f,(t*r)*s))(x) - f(((t*r)*s)-  (x))

- f((t*(r*s))- I (x)) - ((G)(f,t*(r*s)))(x)

and thus (G) is associative with respect to the second
variable, i.e., for fixed f, the action of the inducement is

associative. This is significant, since in practice it is

fixed in G and affects the mapping of

{G; t): Q Q
by

(G; t)(f) - (G)(f,t)

By the associativity of *,

(G; (t*r)*s) - (G; t*(r*s))

6



If ' is the identity transformation, I(f) - f, then

(G; t- 1 *t} - I

If * happens to be commutative, then

(G; t*s} - (G; s*t}

In digital image processing, where X - Z x Z and Y - R,

consider the addition operation + on R. Then, if f and g are

images with domains A and B, respectively, the range

inducement procedure leads to the operation <+>, where

(f <+> g)(i,j) - f(i,j) + g(i,j)

for all (i,j) pixels in A n B. Multiplication, maximum,

minimum, and division similarly induce <.>, <v>, <A>, and

</>, respectively, except in the case of division, where

f</>g is only defined at points of the intersection where g

is nonzero.

If consideration is now given to the group T of

translations of the grid onto itself, for any (u, v) in Z x

Z, there is a translation transformation.

(uv): Z x Z 1-1 Z x Z
onto

defined by

(uv)(i,j) - (i + U, j + v)

The group operation * is defined by

7



((u,v *(3,n))(i,j) - (i + u + m, j + v + n)

and inversion is given by

(uv- (i,j) - (i - u, j - v)

so that

-1
(u,v) - (-u, -v)

According to the inducement procedure, for any ordered pair

(u,v), there is a mapping

(T; U, v): Q 4 Q

defined by

((T; u,vi(f))(i,j) - f((u,v) (i,j))-f(i-u,j-v)

In other words, [T; u, v) does not alter the grey values of

f; rather, it simply moves the image along the vector (u,v).

Besides the translation group on Z x Z, the group of

symmetries of the square can also be used. This group has

two generators, N and D, which are defined by N(i,j) - (-j,i)

Rotation, and D(i,j) - (-j,-i), flip, respectively.

Geometrically, N represents a 90-degree rotation of the grid

in a counterclockwise direction and D represents the flipping

of the grid (out of the plane) around the one hundred and

thirty five degree line through the origin. The group

generated by N and D possesses eight elements. (N) and (D)

denote the respective induced image operators.

8



For those familiar with the bound matrix representation
discussed in Reference 1 and Reference 2, <+>, <x>, <y>,

<A>, </>, (*1, (N), and [D) are more general versions of the

commom image processing operations ADD, MULT, MAX, MIN, DIV,
TRAN, NINETY, and FLIP, respectively. It is significant that

these operations have been naturally induced from the domain

and range structures in a manner that is not specific to

image processing.

Generally, no operation can be defined on images unless

it employs operations that exist in some sense in either the

domain or range spaces. After all, the output of any image

operator must be an image, and the operation must therefore,

in some manner, affect the domain or range of the input.

Thus, any image algebra must ultimately be reduced to

operators that have been range or domain induced. How many
operators can be induced? The number is only limited by the

number of possible operators in the domain and range space.

Moreover, for analog images the inducement must proceed with

X - R x R and Y - R. For analog signals, X - R and Y - R.

For quantized and digitized images, X - Z x Z and Y - Z.

3. SUBALGEBRAS

Besides the considerations discussed above,

there is also a fundamental mathematical (and hence,

structural) consideration that must be taken into account
when choosing inducement: Are there important subalgebras

that can be embedded in the final image algebra? For
instance, the domain space X possesses a Boolean

set-theoretic structure. It is likely that an isomorphic

copy of this structure should exist in the image algebra.

For instance, in two-valued morphological algebra, a

fundamental operation is the intersection of two constant

9



images: If f - 1 on the set A and g - 1 on the set B, we

desire an image that is 1 on the intersection of A and B, and

is undefined elsewhere. If a minimum has been induced in the

algebra, i.e. <A>, then f<A>g gives the desired result.

However, a union operation on constant images is also

required. This is an extended operation in that the domain

may be increased in size. The solution appears to be that a

union operation on constant images should be simply induced.

A union operation would have the following

characteristic: if f - 1 on A and g - 1 on B, then the

output of the union-type operation must be 1 on the union of

A and B. But such an operation cannot be induced directly

since inducement only defines operations on intersections.

At this point it is possible to make use of precisely that

fact. The operation (v) is defined as follows:

f(x), if x C A - B
(f (v) g)(x) - f(x) v g(x), if x e A n B

g(x), if x C B - A

(v) is induced on the intersection; however, it is defined

off the intersection in such a way as to include a desired

subalgebra within the image algebra. Indeed, given f and g

as above f (v) g - 1 on the union of A and B and is undefined

elsewhere.

Other extended operations can be defined analogously to

(v). For instance, defined are an extended minimum,

addition, and multiplication, and denoted by (A), (+), and

(x), respectively. All four of the extended range induced

operations play significant roles in the formation of image

processing algorithms that take the forms EXTNAX, EXTMIN,

EXTADD, and EXTMULT, respectively.

In sum, we must augment inducement by operation

extension so as to obtain sufficient structure. Indeed, the

ultimate desire is to induce all the structure that exists

10



within the domain and range spaces, including important

subalgebras. However, for certain image processing

applications, the entire structure is not necessary. An

important example of this point is morphological image

analysis. Indeed, morphological algebra makes up a basic

subalgebra of the overall image algebra. What defines the

subject of morphology? The answer is straightforward and

algebraically it has very little to do with fitting

structuring elements and only a secondary relation to

neighborhood transformation, instead it is a form of algebra

whose primitive elements generate the subalgebra in question.

4. BASIS

The image algebra is defined by the operations within

it. Indeed, by linking operations, new, higher-level

operations result through function composition. To wit, it

is possible to minimum two images, translate the domain of

the output by u and v, and then rotate 90 degrees. The total

operation is then given, for inputs f and g, by

IN)(IT; u, vl(f <A> g))

The question arises as to the choice of a basis of primitive

operators in terms of which all other operators can be

expressed as macro-operators. Of course, the basis will

depend upon the underlying domain and range spaces, as well

as those operations that have been induced. Moreover, the

basis will not be unique. What we do desire, however, is a

spanning capability sufficient to represent the collection of

algorithms under consideration, together with minimality of

th, basis collection. The first requirement means that all

operators in a particular domain are macro-operators relative

11



to the basis, and the second means that no basis operator is

a macro-operator made up of the other basis operators.

Macro-operators are terms in the algebra, they are formed

using finite algebraic closure of the basis operators under

function composition. A section on macro-operators follows

after a review of the seven fundamental image operations.

With regard to the digital image algebra (DIA), X - Z x

Z and Y - R, the table below gives a set of 7 operators that

constitute the basis. These seven fundamental operations

allow full representation with respect to the field and

lattice structures of R, the collection of translations of Z

x Z, and the application of the group of symmetries of the

square to Z x Z. Moreover, the resulting image algebra

possesses isomorphic copies of the Boolean set-theoretic

algebra, the bound matrix algebra, and several other

algebras.
TABLE 1 -RANGE AND DOMAIN OPERATIONS

RANGE OPERATION DIA OPERATION
4. <4>
x <x>
v (v)/</

DOMAIN OPERATION DIA OPERATION
N (N)
D (DI
T (T)

12



5. SEVEN FUNDAMENTAL IMAGE OPERATIONS

Commuting diagrams illustrating the nature of the
inducement process along with examples of each of the seven
basic operations will now be given. The domain of the images
f and g in the ensuing discussion are A and B respectively.
These sets are subsets of ZxZ and the image space of f and g
are the reals R. In subsequent commuting diagrams functions
with restricted domains are labeled using the unrestricted

function.
The fundamental operation of image addition is defined

only on the intersection of the domains of the two images and
there it is given by:

(f<+>g)(i,j) - f(i,j) + g(i,j) for all (i,j) C A n B

A commuting diagram illustrating this situation is

f +> g

A f

A r B

B
Figure 1 - Range Induced Addition Operation

13



An illustration of the use of <+> is provided utilizing

bound matrix representation for images f and g.

f 1 2
Thus, if f - 3 4

56
0,0

and

g 3 -2 I
0,0

then
4 0*

f<+>g- 36*

0,0

where * is a symbol to denote "undefined" and matrix

subscrfpts are used to locate the position the first term in

the matrix in the integral lattice. All other entries in the
matrix have relative locations in the lattice equivalent to

their relative positions in the matrix.

Similar to the basic image addition operation, the basic

operation of image multiplication is defined only on the
intersection of the domain of the given images. Indeed,

(f<x>g)(i,j) - f(i,j) x g(i,j) for all (i,j) e A n B

It follows that the commuting diagram illustrating this

operation is similar to the one for image addition.

Using the images f and g previously represented by bound
matrices the image multiplication operation results in the

image:

14



3 -4 *

(f <x> g) - 0 8 *

0,0

Unlike the image addition and multiplication operation the

basic operation of image maximum results in an image with

domain equal to the union of the domains of the original

iWages. Here,

f f(i,j)vg(i,j) (i,j) e A n B
(f(v)g)(i,j) - f(i,j) (i,j) C A - B

g(i,j) (i,j) C B - A

The commuting diagram illustrated below can be used in

representing this operation. Thus,

f(v1g

A-B f

B-A

Figure 2 - Range Induced Maximum Operation

15



The fundamental image maximum operation when applied to f and

g as previously given results in the image

f(v) g 3 4 5
56 *

0,0

Image division when applied to f and g results in an image

whose domain is some subset of A n B. Specifically,

(f</>g)(i,j) - f(i,j)+g(i,j), if (i,j) v A n B and g(i,j) # 0

In terms of commuting diagrams if

B' -B- ((i,j) : g(i,j) - 01 then ye have

f </> g

If

BR

B-B'

Figure 3 - Range Induced Division Operation

16



Using f and g as previously defined it follows that

f </> g 1/3 -1

0,0

Recall that the last three fundamental operations are domain

induced from corresponding one to one onto functions on ZxZ.

The fundamental rotation operation (N) is such that

({Nf) (ij) - f(j,-i)

It is induced from, the 90 degree rotation operation (N)

which is such that (N) (i,j)- (-J,i).

The commuting diagram given next illustrates this

operation. In this diagram N(A) is the range of the domain

of f provided by the pointwise (counterclockwise) 90 degree

rotation N.

(NIf

f
R

N(A) A

Figure 4 - Domain Induced 90 Degree Rotation Operation

17



This diagram clearly shows the inducement process is:

((N)f) (i,j) - f({N)-1(ij))

Using the image f previously given we have

[N)f - 2 4 6
[N~- 1 61 3 5

0,1

Notice that the grey value 1 is the only fixed value since it

occurs at the origin. All other grey values are located 90
degrees counterclockwise away from their original location in

image f.

The fundamental flip (for reflection) operation {D) is

defined by

({D)f) (i,j) - f(-j,-i)

The commuting diagram describing the domain inducement

involved in defining this operation follows:

(Di}f

{Dkf

DIAA R
A

Figure 5 - Domain Induced Flip Operation

18



The flip operation is induced by the idempotent pointwise

operation D: ZxZ 4 ZxZ where D(i,j) - (-j -I). In the

above diagram D(A) is the range of the domain of f obtained

by utilizing D. If the bound matrix f previously defined is

employed utilizing the flip operation we have, earlier f was

defined as

f- 1 2
3 4
5 6

0,0

Then

{D~f -j1 3 5{Pf"i 2 4 6 

0,0

Notice the similarity of this operation with that of matrix

transposition. Indeed, the image flip operation can be

described in terms of transpose and the image translation

operation which is described in detail next.

The translation operation is domain induced from the

successor operation T on the integers. Here

T: ZxZ 4 ZxZ where

T (i,j) - (i+l,j)

The corresponding domain induced operation defined in the

usual way gives

((T)f) (i,j) - f(T- (i,j)) - f(i -1,j)

The commuting diagram illustrates the inducement process:

19



T(A) A f R

Figure 6 - Domain Induced Translation Operation

Thus for f previously given, we have

(Tf- *1 2 1 2
*3 4 - 2 4
*5 6 5 6

0,0 1,0

6. MACRO-OPERATORS

Now that a collection of fundamental operators has been

selected for the Digital Image Algebra (DIA), a library of

macro-operators can be given to demonstrate the spanning

capability of the basic seven. Among the macro-operator

collection to be presented will be low-level mathematical

operators, as well as popular image-processing operators such

as dilation and convolution. The operators will be presented

in the form of a list, with the operator's name, mathematical

definition, and basis representation. With regard to the

latter, the representations of the higher level operators

will employ lower level macro-operators that have already

20



been expressed utilizing the basis primatives.

Throughout the development of the macro-operator or term

library, two isomorphisms, I1 of the Reals (R), with the set

of images defined only at the origin and 12 the collection of

subsets of Z x Z with the set of images having constant value

0, are defined. The constant image defined on the set A with

value k will be denoted by kA. In particular, k0 will denote

the image possessing the single grey value k at the origin.

Moreover, if the following assumption is made: given the

constant image OA' with A finite, the elements of A can be

employed as an index set. A list of fundamental
macro-operators similar to those defined in the Phase I

report, follows. Where indicated, proofs showing that these

operations are indeed terms within the algebra are given in

the examples which are in the following section.

a. Domain Extractor. Given an image f defined on A,

K(f)-0A. Using the identification 12, K(f) - A.

Basis Representation: K(f) - 0ZxZ <x> f

b. Existential Operator. Given a set 0A and a real number

k0 , E(k0, 0A ) - kA. Because of the identifications Ii

and 12, 9(k, A) - kA.

Basis Representation: E(k, A) - kzx <+> 0A

c. Additive Inverse. -f

Basis Representation: -f - E(-l, K(f))<x>f

d. Extended Minimum. f(A) g

Basis Representation: f (A) g - -[(-f) (v) (-g)}

e. Extended Addition. f (+) g

Basis Representation:

f(+)g-(f<+>g) (v) ((G</>G)<x>f} (v) {(H</>H)<x>g) where

G - E(I,K(f)) (x) E(O,K(g)}, H - E{l,K(g)}(x)E{0,K(f)}

21



f. Extended Multiplication f (x) g

Basis Representation: Same as f (+) g, except employ

f<x>g

g. Directly Induced Maximum. f <v> g

Basis Representation:

f <v> g - (f(v)g) <+> K(f) <+> K(g)

h. Directly Induced Minimum. f <A> g

Basis Representation:

f <A> g - (f(A)g) <+> K(f) <+> K(g)

i. Scalar Multiplication: Given an image f and a real
number k, kf denotes the usual scalar multiplication of
an image by a scalar. In fact, there are two images
involved since k is actually k0.

Basis Representation: kf - E(k, K(f)) <x> f

j. Absolute Value. Ifj

Basis Representation: jfj - f <v> (-f)

k. Complementation. For the constant image 0A' we define

the complement image C(OA) - 0AC.

Basis Representation: C(OA)=OZxZ </> (1zxz(+)E(-1,A))

1. Thresholding. A common image processing operation is
thresholding. Given an image f and a scalar k, the

thresholded image Tk(f) is defined by

{ 1, if f(i, j) > k
(Tk (f)}(i~j)m 0, if f(i, j) < k

Basis Representation: Let g - f <+> E{-k, K(f)J. Then
Tk(f) - (-f(g<A>E[O,K(g)})</>(g(A)E[O,K(g)})})(+)E(l,K(g))
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m. Selection. Given an image f and a set B, the selection

operator S returns f restricted to the set B.

Basis Representation: S(f,B) - f <+> OB

n. Restriction. Given images f and g, R(f,g) is restricted

to the domain of g.
Basis Representation: R(f,g) - S(f, K(g))

o. Extension. Given a primary image f and a secondary image

g, the extension of f by g, H(f,g), is equal to f on K(f)

and g on K(g) - K(f).

Basis Representation: H(f,g) - f (+) (E{O, K(f)) (x) g)

p. Translation. Perhaps the single most important operation

in image processing algorithms is translation. The basis

operator {T) yields a unit translation in the positive x

direction. Consequently, the concatenation of (T) n

times, (T n , yields a translation of n units in the

positive x direction. More generally, we require a

representation of the macro-operator (T; u,v}, which

produces a translation of u units in the x direction and

v units in the y direction.

Basis Representation:

Positive Y translation IT; 0, 1) - IN)' (T)(N)
Negative X translation IT; -1,0) - (N) (T}N}l
Negative Y translation IT; 0, 1) - (NI(T)N}P

q. Offset. Given a real number k and an image f, the offset

of f by k, f + k, is the image obtained from f by adding

k to each grey value.

Basis Representation: f + k - E~k, K(f)) <+> f

23



r. Minkowski Addition (Dilation). Given two images f and g

possessing finite domains, the grey-scale dilation of f

and g is defined by:

f S g - EXTMAX(i,j) e DOMAIN(g) (T R A N ( f :i 'j )+ g (i 'j ) )

(see Reference 3). Since we have identified the subsets

of ZxZ with the 0-valued constant images, the

set-theoretic Minkowski addition is given by the same

definition. Basis Representation: Since EXTMAX, TRAN,

and DOMAIN are bound matrix versions of (v), (T;_,_), and

K, respectively, the definition is, in essence, a basis

representation. Specifically,

f a g -(v) (i,j)  C K(g) {{(T ;i 'j }(f )+g (i 'j )}

s. Minkowski Subtraction. Given two images f and g with

finite domains, the grey-scale Minkowski subtraction is

defined by

f 0 g - (A)MIN (i,j)c DOMAIN(g) [TRAN(f;i,j)+g(i,J))

(see Reference 3). As with minkowski addition, the

corresponding set-theoretic erosion is given by the same

definition.

Basis Representation:

f 0 g -<A> (i,j) IK(g) { (T ;i 'j )(f )+ g ( i 'j )

24



t. Dot Product. Given two images f and g possessing a

common finite domain, i.e. A, f • g is defined as the

usual sum-of-products dot product. Should the images not

possess a common domain, the dot product is undefined.

Basis Representation:

f " g - <+>(i,j) e K(f) IT; -i, -j)(f <x> g)

u. Correlation. The correlation of two images f and g

posessing finite domains is given pointwise by

(f a g)(ij) - (p,q) K(f) f(p,q)g(p-i,q-j)
(p-i,q-j) K(g)

Basis Representation:

f a g - (r,s) e (+) K(g) g(r,s){T; -r,-s)(f)

where, rigorously, under the identification I1,

g(r,s) - S((T; -r, -s)(g),{(0,0)))

v. Moving-Average Filter. The usual moving-average filter,

as defined in Reference 1 is essentially a convolution:

however, there are two conventions (which guarantee that

the domain of the filtered image is given by the

morphological opening of the input domain by the mask

domain): (1) The second input g is a mask, which simply

means it is defined at the origin. (2) If the domain of

the translated mask {T; i,j)(g) is not a subset of the

primary input f, then the filter is undefined at (i,j).

While the first convention does not affect the basis

representation, the second does. Instead of (+), <+> is

employed. The notation F(f,g) denotes the output of the
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filter.

w. Image Vector Norms. Given a vector of images, say

" (f' f21...'' fm)

various norms on are defined (see Reference 1). For

the sake of simplicity, consider only the supremum norm,

and we will suppose that the fj possess a common domain.

Then

111i1. (i,j) = max[1fl(i~j)1, If2(ij'j), ..

Ifm(ij)I)

Basis Representation:

m
IltIEI w <V> Ill

j -

x. Gradient-Type Edge Detector. Various edge detection

algorithms employ digital image gradients, such as the

Prewitt and Sobel gradients. An edge image is produced

by filtering by two gradient masks, applying a norm to

the resulting image vector and then thresholding.

Restricting our attention to the supremum norm, a basis
representation for the entire procedure is given by

E(f,g,h,t) - Tt( Ij(F(f,g),F(f,h) j. )

where f is the input image, g and h are directional mask

images and t is the threshold value.
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7. MORPHOLOGICAL BASIS

As noted previously, the morphological algebra is a

subalgebra of the image algebra (assuming the images under

consideration possess finite domains). As such, it is

defined precisely by the choice of its basis elements.

Specifically, we define the morphological basis to the

collection of operators

M - ((N), T, <A>, (v)j

From the operators in M, it is possible to construct the

two-valued dilation and erosion. Keep in mind that

two-valued morphology involves operations on subsets of Z x

Z; of the form 0 (A). Noting that IT; u, v) is a

macro-operator relative to (NJ and (TI, and hence relative to

M, we have the Minkowski addition (dilation)

0{A} * 0(B) - (v) (T; i,j)(0{A))
(i,j) e 0{01

the Minkowski subtraction

0{A) e 0(B) - <A> IT; i,j)(OA))
(i,j) C O(B)

and the erosion

ERODE(0(Al, 0(B)) - 0(A) e {N) 2 (O{B})

For the grey-scale morphological algebra, we employ the

grey-scale morphological basis:
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M' m M U (+, -)

where + is the offset operator (macro letter q.) and - is the

additive inverse operator (macro letter C.). Although <A>,

+, and - are macro-operators relative to the full basis, they

are much simpler than the operators from which they are

derived. It is therefore necessary to demonstrate that the

grey-scale dilation and erosion are macro-operators relative

to M.

First note the domain extractor K (macro letter a.) can

be constructed from the operators of M:

K(f) - 0 zxz <A> (f (v) (-f))

In addition the "reflection" macro-operator J, reflects an

image through the origin: (J(f))(i,j)-f(-i,-j). The basis

representation is:

J(f) - (N12 (-f)

Referring to the original basis representations for Minkowski

addition (macro letter r.) and Minkowski subtraction (macro

letter s.), it can be seen that both representations only

employ operators from M. Moreover, erosion is given by

ERODE(f,g) - f G J(g)

Two points should be noted. The two-valued representations

are special cases of the grey-scale representations.

Moreover, in both settings, the opening and closing are

immediately expressible in terms of Minkowski addition and

subtraction.

OPEN(f,g) - (f 0 J(g)) Q g
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CLOSE(f,g) - - OPEN(-f, -g)

In the sum, for images possessing finite domains,

morphological algebra is a subalgebra of the overall digital

image algebra. The importance of recognizing its basis is

that the basis determines the extent of the subalgebra, and

thus its domain of applicability.
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SECTION III

MACRO OPERATIONS REPRESENTATIONS

In order to demonstrate the operational nature of the 24

macro-operator representations given earlier, a walk-through

using sample images is provided throughout the section. The

lettering scheme will correspond to the lettering of the

macro-operator representation from Section II, paragraph 6.

Proof of several operations are also provided at the end of

the appropriate examples.

a. Domain Extractor K. Let

2 3 1
f 0 -1 2

1 4 *
0,2

According to the basis representation of K,

K(f) - 0zxZ<X>f - 0 0 0
0 0 *

0,2
which, under the identification of zero-images and

subsets of ZxZ is precisely the domain of f. Note that

the induced multiplication operator <x> only yields an

output on the intersection of the domains, and since the

domain of f is a subset of the domain of 0ZxZ , the

resulting image is defined only on the domain of f.

b. Existential Operator E. Let

A - ((0, 0), (0,1), (1,0), (1,1))

Then under the identification 12,consider the image
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A' o0,1

Suppose the constant k - 2. Under the identification Ii,

k (2 )
0,0

According to the basis representation of E,

E(k, A) - E(2 0, 0A ) - 2ZxZ <+> OA

0 0 I
-2 <0, 1

- 2 2
0,1

As in the preceding representation for K, the fact that A

is a subset of ZxZ results in the output image having

domain A.

c. Additive Inverse -. Let f be as in (a-.). Then,

according to the basis representation and the

identifications I1 and 12.

-f - E{-1, K(f)} <x> f

- - -1 -<x> 0 -1 2
-1 -1 * 1 4 *

0,2 0,2

- 2 -3 -1
0 1 -2

-1 -4 *
0,2
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d. Extendend Minimum (A). Let f be the image given in

example a and let

2 1
0 1

g 2 3
5 1

0,3

According to the basis representation,

f (A) g - -((-f) (v) (-g))

-2 -3 -1 ( -2 -1
0 1 -2 (v) 0 -1
-1 -4 * -2 -3

0,2 -5 -1
0,3

-2 -1 * 2 1 *
0 -1 -1 0 1 1
0 1 -2 0 -1 2

-l -1 * 1 1 *
0,3 0,3

e. Extended Addition (+). Let f and g be as given

previously. Since the basis representation of (W) is

rather long, we will break the present illustration into

pieces as shown in Section IIb, paragraph e and then put

it all together to illustrate extended addition. Let

2 1
2 3 1 0 1

F-f <+> g 0 -1 2 <+> 0 1
1 4 * 2 3

0,2 5 1
0,3

2 4
2 2
6 5

0,2
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G - Eji, K(f)) (A) Ef0, K(g))

0 0
1 1 1 0 0
1 1 1I <A> 0 0
1 1 * 0 0

0,2 0,3

0 0 *
0 0 1
0 0 1
0 0 *

0,3

H =Efi, K(g)) (A) EfO, K(f))

1 1 0 0 0
1 1 (A) 0 0 0
1 1 0 0 *
1 1 0,2

0,3

1 1 *
0 0 0
0 0 0
0 0 *

0,3

Then

(G (/> G) <x>f- * * 1 1 4 *
0,2 0,2

1 * 1 12
0,2 2,2

12 1

(H </> H) <x> g - ( 1 1 )0,3 <x> 2 35 1
0,3

-(2 1)
0, 3
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Finally, according to the basis representation, the

extended addition is given by:

f (+) g - F (v) ((G </> G) <x> f) (v) ((H </> H) <x> g)

2 4
= 2 2 (v) l v)(2 1)

6 5 0,3
0,2 2,2

2 1 *
2 4 1
2 2 2
6 5 *

0,3

f. Extended Multiplication (x). The operator (x) possesses

the same basis representation as <+> except that we

employ f (x) g in place of f (+) g. Thus, utilizing the

same f and g definitions as in the previous illustration,

we let

0 3
F-f <x> g- 0 -3

5 4
0,2

Using G and H from the preceding case, the extended
addition is given by:

f (x) g F F (v) ((G </> G) <x> fj (v> ((H </> H) <x> g)0 3
0 -3 (v) 1v) 2 1
5 4 2 0,3

0,2 2,2

2 1 *
0 3 1
0 -3 2
5 4 *

0,3
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g. Directly Induced Maximum <v>. According to the basis

representation, if we let f and g be as previously, then

f <v> g - (f (v) g) <+> {K(f) <+> K(g))

2 1 *

2 3 1
2 3 2
5 4 *

0,3

0 0 0 0 0
<+> 0 0 0 <+> 0 0

0 0 * 0 0
0,2 0 0

0,3

2 1 * 0 0
- 2 3 1 <+> 0 0

2 3 2 0 0
5 4 * 0 0

0,3 0,2

2 3 1
- 2 3

5 4
0,2

h. Directly Induced Minimum <A>. Because of the similarity

to <v>, we will omit an example in this case.

i. Scalar Multiplication -. Let f be as above and k - 2.

Then the basis representation gives

2f - 2 • f - E(2, K(f)} <x> f
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12 2 2 2 3 1
2 2 2 <x> 0 -1 2
2 2 * 1 4 *

0,2 0,2

4 6 2
0 -2 4
2 8 *

0,2

J. Absolute Value II . Again using f, according to the

basis representation,

Ifl - f <v> (-f)

2 3 1 -2 -3 -1

0 -1 2 0 1 -2
1 4 * -1 -4 *

0,2 0,2

2 3 1

0 1 2
1 4 *

0,2

k. Complementation C. Let

0 0

Applying the basis representation for complementation and

using complementary bound matrix notation

C(0A)w 0 ZxZ</> (lzx z (+) E-l, A)6

36



- 0:ZxZ </>(l: zxZ 1-1-
- -1* *0,1 0,1

Note that 1Zx Z (+) E{-1, A) yields an image which is 0 on

A and -1 elsewhere. Hence, when we divide 0zx Z by this

image, all pixels in A have undefined gray value, whereas

those pixels outside of A still have value 0. The

complementary bound matrix notation is used to denote the

latter occurrence.

1. Thresholding. To demonstrate the threshold

representation we let f be as previously and k - 2.

First, utilizing the notation in the original

specification,

g - f <+> E(-2, K(f)j

2 3 1 <> -2 -2 -2
0 -1 2 <+> -2 -2 -2
1 4 * -2 -2 *

0,2 0,2

-2 -3 0
-1 2 *

0,2
Let

G - g <A> E{O, K(g))0o 0 0o 1 1 0 0 -
g <> 0 0 0 - -2 -3 0

0,2 0,2

According to the basis representation,

T2 (f) - (-{G </> GI) (+) EfI, K(g))

- -1 -1 * (4-) 1 1 1
-i * * 1 1 *

0,2 0,2
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1 0
- 0 0 1

0 1 *
0,2

Proof of term representation.

h - -((g <A> E{0,K(g)}) </> (g <A> E(0,K(g)})}(i,j)

Then h(i, j) - -1 if and only if g(i, j) < 0; otherwise

it is undefined. Thus,

0, if g(i, j) < 0
(h (+) E(1, K(g))} .i ~,j

1, if g(i, j) > 0

But g(i,j) - f(i, j) - k

m. Selection S. Let f be as above and let

B - ((0, 0), (0, 1), (0, 2), (0, 3)1

then, using the basis representation

S(f, B) - f <+> 0B

2 3 1 0
S 0 -1 2 <+> 0 2

1 4 * 0 - 0
0,2 0 1

0,3 0,2

n. Restriction R. Let f and g be as in previous

illustrations. Using the basis representation,

R(f, g) - S(f, K(g))

0 0
2 3 1 0 0 2 3

ISf 0 -1 2 0 0 }- 0 -1
1 4 * 0 0 1 4

0,2 0,3 0,2
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o. Extension H. Let f and g be as in the preceding

representation. Then

0 0 0 ( ) 2 1
E{O, K(f)) (x) g - 0 0 0 (x) 0 1

0 0 * 2 3
0,2 5 1

0,4
2 1 *
0 0 0
0 0 0
0 0 *

0,3

Thus, the basis representation for H yields

H(f, g) - f (+) (EfO, K(f)) (x) g)

2 1 *
2 3 1
0 -1 2
1 4 *

0,2

p. Translation (T). (T; 1, 0} is in the basis. To

demonstrate the basis representations of the other three

unit translations, we shall employ the image:

f * 2 2

0,1

where we have deliberately not employed a minimal

representation of the image so that the bottom-left

pixel, which is star-valued and located at the origin,

will remain within the frame of the matrix, the reason

being to better illustrate the translation and rotation

effects. The first representation is
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(T; 0, -1)(f) - (N)'ITI(NJ(f)

2 *

3
-(Nis (T)

-1,3

2
3

(N)l

0,3

-(N)2 (2 3 *

-3,0

(NJ 3
2

0,0

* 3 2)
010

The second representation is

(T; -1, 01(f) - (N)2 (TI(Njl (M

2
3 *

( N){T)2 (NJ

-1,3

( N) 2 1T) 2 3 *

-3,0

m (N)2 2 3 - ,

-(NJ * 3* 2
010
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0,1

The third translation representation is illustrated by

{T: 0, 1)(f) - (N){T}{N)l (f)

2 *
- (N)(TI(N)2  3 *

-1,3

- (N)TI(N) * * 30

- (N}[T} * 3
* 2

0,0

-fNt * * 3
• * 2

0,0

• * 3 2

0,2

Proof of term representation:

(NJ' (T}{N) (f)(i,j) - fN}{T)(f)(j,-i)
- (N)I(f)(j - 1, -i)
= {N) 2 (f)(-i + 1)

- (N)(f)(-j+l,i)

- f(i,j -1)

- (T;0,1}(f)(i,j)
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(N) 2 (T)(N)2 (f)(i,j) - (N) 2 (T)(f)(-i,-j)-{H} (f)(-i - J)
- f(i + 1, j)

( T; -1, 01(f)(i,j)

(N}(T)(N)3(f)(i,j) - (N)(T)(f)(-j,i)
- (N}(f)(-j - l,i)

- f(i,j+l)
= (T; 0, -1) (f)(i,j)
- (D)(f)(-j - 1, -i) - f(i, j + 1)

q. Offset +. Once again consider the same image f, and let

k - 2, Then

f + 2 - E(2, K(f)} <+> f

Because of the similarity to scalar multiplication, the

details shall not be given.

r. Ninkowski Addition Q. To demonstrate the representation

of the grey-scale Minkowski addition, let

f 4 1 1f- 5 0t0,1
and

g .- * 12
0,1

Then, since K(g) - ((1, 0), (1, 1), according to the

representation,

f S g - ([T; 1, 01(f) + 2) (v) ([T; 1, 11(f) + 1)

* 5 2

0,1 0,2
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* 5 2
* 6 3
* 7 2

0,2

s. Minkowski Subtraction 9. Using the same images as in the

preceding illustration, we simply interchange <A> for

<v> to obtain

f g- * 7 2I <A> * * *

0,1 0,2

-1611
0,1

t. Dot Product .. Let

f- 12 3 4I
0,0

and

g - 11 -3 2 1
0,0

According to the basis representation,

f • g - (T; 0, 0(f <x> g) <+> (T; -1, Oj(f <x> g)

<+> (T; -2, 0}(f <x> g)

- 12 -9 8 1 <+> 12 -9 8 1
0,0 -1,0

<+> 12 -9 81 -2,0

0,0
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Since (0, 0) is the only pixel in the intersection of the

three domains. Under the identification Ii, ( 1 )0,0 is

identified with the real number 1, which, of course, is

the dot product of f with g.

Proof of term representation. Since each translation

places f(i,j)g(i,j) at the origin,

(f • g)(0,0) " (i~j) E K(f) f (i 'j )g (i 'j )

Thus, under the identification I1, the representation is

accurate if (f • g)(p,q) is undefined for all (p,q) *

(0,0). But f • g is defined at the point (p,q) if and

only if (p'q)(i,j) C K(f) K(f) - (ij)

But the latter intersection is the erosion of K(f) by
K(-) and, since K(f) is finite, this erosion consists

only of the origin.

u. Correlation G. To demonstrate the correlation
representation employ the images f and g used above (s.).

Noting that

K (g) - 10 0 0 1
0,0

we have

f S g - l{T; -1, -1)(f) (+) 2(T; -1, 0)(f)

5 0 +) 10 0-1,0 
-1,-1

8 2
14 1
5 0

-1,-i

Proof of term representation h denotes the proposed basis
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representation, then h is undefined at (i,j) if and only

if f 6 g is undefined there. Specifically, h is

undefined at (i,j) if and only if, for any (r,s) e K(g),

(i,j) % K((T;-r,-s}(f)).

This in turn is equivalent to

K(g) n K((T; -i, -j)(f))

which is itself equivalent to

K(UT; i, j}(g)) n K(f)

On the other hand, f a g is undefined at (i,j) if and

only if (r-i,s-j) % K(g) for all (r,s) in K(f), but this

is clearly equivalent to the above intersection being

null. The proof is completed by showing that whenever

the correlation 4s defined, f S g - h. Changing

variables in the definition of f 0 g yields

(f a g)(i,j) - f(m + i, n + j)g(m,n)
(m,n) e K(g)

(m+i,n+j) c K(f)

- (T; -M, -n}(f))(i,j)g(m,n)
(m,n) e K(g)

(m+i,n+j) e K(f)

- h(i,j)

v. Moving-Average Filter. Let f and g be defined as

2 41 f 2 3 1
g* f- 0 -1 2

0,1 1 4*
0,2
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Then, according to the conventions regarding the basis

representation,

F(f,g) - 2(T; 0, -1)(f)<+>l(T; 0, 0)(f)<+>4(T; -1, -1)(f)

4 6 2 <> 2 3 1
0 -2 4 0 -1 2
2 8 * 1 4 *

0,1 0,2

8 12 4
<+> 0 -4 8

4 16 *
-1,1

-3 10
0,1

w. Image Vector Norm. The supremum norm representation is

demonstrated by using f as above and

18 -3 0

h- 4 7 1
6 -1 *

ao

and the image vector (f, h). According to this representation,

1I(f, h)lI. I f I <v> I h I

- 0 -1 2 <v> 4 7 1
1 4 * 6 1 *

0,2 0,2

8 3 1
4 7 2
6 4 *

0,2
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x. Gradient-type Edge Detection. The basis representation

is demonstrated using Prewitt edge detector masks defined

by g and h as shown

-1 0 1

g - -1 0 1
-1 0 1

0,0
and

1 1 1
h- 0 0 0

-1 -1 -1
0,0

f represents the observed image upon which the mask
will be applied.

0 1 0 6 5 6
0 1 0 5 6 6

f 1 0 0 6 6 6
2 0 1 5 6 6

0,3

Moreover let t (threshold) - 9. Then

* -1 15 17 1 *

F(f,g) - * -2 15 17 2 *

0,3

* 0 1 -1 0 *

F(f, h) - * -2 0 -1 0
* * * * * *

0,3

1 15 17 1
II(F(f,g), F(f,H))11, - 2 15 17 2

1,2
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Thresholding with t - 9 yields

E(f,g,h 9) -j0 1 1 a
1,2

This completes the step-by-step trace of the basis
representation illustration.
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SECTION IV

UNIVERSAL IMAGE ALGEBRA STRUCTURE

1. INDUCEMENT METHODOLOGY

As discussed earlier,the inducement methodology is quite

general; indeed, we saw how a simple group operation + in the

range space leads at once to an induced operation <+>. In

addition the existence of any translation group in the domain

leads to a domain induced operation on images. In the

current section the methodology will be formalized into a

general algebraic structure, to be termed the universal image

algebra. Moreover it will be shown that the structure

applies ipso facto to other image models besides the digital

image algebra.

2. TYPES OF STRUCTURES

Consider a transformation group S and a lattice

commutative ring I with identity, where I possesses a partial
multiplicative inverse operation. The set of images is then

given by

X -IJIA
ACS

the collection of a functions with domains in S and values in
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I. The elements of I will be called grey values and the

elements of S will be called pixels. S and I will be called

the domain set and range set, respectively.

a. Examples of possible domain sets are

(1) the xy plane RxR

(2) the usual integer lattice ZxZ

(3) the hexagonal (or some other tiled) lattice

(4) the collection of pixel squares in RxR (which lead to

the sampled data images)

(5) the orientation histogram on a Gaussian sphere

(6) Rn , n > 1 where Rn - RxRxRxR...R

(7) Zn , n > 1

b. Examples of grey values (the elements constituting the

range set I) are

(1) real numbers (as in the digital image algebra)

(2) complex numbers

(3) Galois numbers (numbers from a finite field)

(4) vectors whose components consist of any of the above

types
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(5) possibility-valued distributions

3. GENERAL STRUCTURES

In order to analyze the general structure, it is useful

to characterize the types of fundamental operators involved.

In the digital image algebra, there are 7 basic operators, 3

of which are domain induced and 4 of which are range induced.

There are also 3 very basic "structural" operators, which,

because of the identifications of real numbers with images

defined only at the origin and of subsets of ZxZ with

zero-valued images, can be represented as macro-operators.

These structural operators are the domain extractor K,

the parameter extractor G, and the existential operator E.

Whereas the first and last of these have been expressed in

the macro-operator section, the parameter extractor has yet

to be defined. For any image f, G(f) gives the grey value at

the G origin. Rigorously, if f(0, 0) - a, then under the

identification 11,

G(f) - ( a )0,0 "a 0

If f is not defined at the origin, G(f) is still defined: in

such a case it is the null image. A basis representation for

G is given by G(f) - f <+> 00.

At this point, we shall present the fundamental domain

induced, range induced and structural operators for a number

of image-algebraic structures. As a result of different

algebraic structures in the domain and range sets, it might

very well be that some change in the basis elements might

occur; however, as will be seen in subsequent paragraphs such

changes, if they exist at all, are straightforward and not

extensive.
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The first case we consider is the extension of the seal

field of grey values into the complex field. In this case,

we assume that the grey values are complex numbers and hence

A c ZxZ

The extension occurs naturally in image processing due to the

use of Fourier transforms (among other complex techniques).

Since C is a field (like R), we should expect that the

structure of X is similar in the complex case to the usual

digital algebra setting. Grey values are of the form a + ib

and images are of the form f - u + iv, where u and v are the

real and imaginary parts of the image, respectively. For

instance, if

3 + i5 4 - if- 2 5 + 03

then
13 4j

Real f -12 5 - Re f

and
5 -1

Imaginary f - 2 3 - Im f

The structural mappings must reflect the complex range.

Thus,

E (a + ib, A) - (a + ib)A

G(f) - u(O, 0) + iv(0, 0), if f is defined at the origin

Under the identification K(f) is the domain of A.
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Insofar as the range induced mappings are concerned, if we

assume that f and g are elements of CA and CB , respectively,

then f <+> g, f <x> g, and f </> g are defined in the same

manner as in the real case. However, there is difficulty

with f (v) g because the complex field is not ordered. To

arrive at a maximum operation, the maximum v is induced on

the real and imaginary parts separately. To wit,

(f<v>g)(x,y)-fuf(x,y) v u (X,y)) + i~vf(xy) v Vg(X,y)}

for (x, y) in the intersection of the domains of f and g,

where we have let uf and Ug denote the real parts of f and g,

respectively. The extended union is formed as usual by

letting f (v) g equal f on K(f) - K(g) and g on K(g) - K(f).

Since the complex conversion occurs only in the range,

the domain induced mappings {TI, (N), and {DJ are unaffected.

In continuous image processing, the domain set is RxR.

Thus, the collection of images is

A c RxR

The definition of both the structural and range induced

mappings are the same as in the digital image algebra

setting; however, because of the ability to continuously

translate and rotate, the domain inducement is altered, even

though in the case of (T), the defining relation appears the

same. In any event, the domain induced mappings are given by

(T; s, tJ(f)(x,y) - f(x - S, y - t)

(N; f,o}(f)(x, y)- f(x cose-y sine, x sine+y cose)
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(D; f,e)(f)(x,y) - f(-x cose+y sine, x sine+y cose)

As noted earlier, in various settings the basis may have to

be altered. In the digital grid, we only required the basic

90 deg operator (N) to generate the group of rotations

{(N), (N) 2 , (N) 3 , (N)4

There does not exist any generator in the continuous case.

As a consequence, the basis must contain (N; ., .) and (D; .,

.), both of which are functions of two variables, an image

and a real number (radian). The finite group theoretic

elegence and simplicity are lost due to the nature of the

model. Should, however, we consider a finite subgroup of

images resulting from the actions of [N; .,e) or (D; .,e,

the resulting group is isomorphic to either the cyclic group
Cn (R2 ) or the dihedral group D2n (R 2), respectively, n - 1,
2,.... In the terms of inducement Cn(R 2 ) is induced by

application of the matrix

2n 2n
cos - sin

n n

2n 2m
sin cos

n n

(relative to the usual basis). D2n(R 2) occurs by application

of the preceding matrix in conjunction with

0 -1
(relative to the usual basis).

If we consider image processing using sampled data
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systems, then

X ~RA

A c ZxZ , where ZxZ

denotes the collection of unit squares centered at the grid

points, where each square contains its left and bottom

boundary, but does not contain its top and right boundary.

Algebraically, we treat sampled data images as if they were

digital images. Ignoring topological considerations, such an

approach is legitimate. Thus, the induced and structural

mappings are the same as in the digital case. If we do not

ignore topological considerations, then there does not exist

any rotation or reflection type mappings other than the

identity.

Next consider multi-spectral image processing, where the

domain set is ZxZ and the range set is R, the set of

Euclidean n-vectors. The usual vector addition is defined as

a + b
1 1

a + b
2 2

a+b-

a + b
n n
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where

a b
1 1

a b
2 2

a- . b-

a b
n n

and multiplication in I is given by

a b
11i

a b
2 2

ab -

a b
n n

A commutative ring with identity results

1

1

1

Moreover the structure possesses zero divisors. Indeed, for

n - 2,
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i o 11 o I  0o
* - mI 0o 0 0 0 0

the zero element in I. To obtain a lattice, we use the

operations v (max) and A (min) defined by

a v b
1 2

a v b

n n

and

a A b
1 1

a A b-

a A b
n n

respectively. A partial multiplicative inverse operation is

defined by

a + b
1 1

a + b-

a + b
n n
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providing bi is not 0, for i - 1, 2,..., n. Given the above

algebraic description of I, the multispectral image algebra

can be described by

X U (Rn)A
A c ZxZ

The structural mappings are given by

t t
1 1

A

t t
2 2

A

S,A) -

t t
n n

A

f (0, 0)
1

f (0, 0)
2

G(f) -

f (0, 0)
n 0,0
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where we assume that (0, 0) is in the domain of f. Lastly,

K(f) gives the domain of f in ZxZ. Of course, under the

identification I's K(f) is actually an image defined on A

whose values are all given by the zero vector, the additive

identity in I.

Range inducement is analogous to the digital image case

except that n-vectors that constitute the range set are

utilized. For instance,

(f <+> g) (i,j) - ( fk (i,j) + gk(i, j)

where the notation indicates that the vectors are added

componentwise. Since the domain is ZxZ, domain inducement

proceeds as in the digital image algebra.

Returning to the general case cited at the outset of the

section, certain algebraic properties are seen to hold. For

the sake of completeness, before proceeding to the next
theorem, we state the definition of a module. V is a module

over K if

Ml) For all u and v in V, u + v is in V and V is

an Abelian group

M2) For all v in V and k in K, kv lies in V and

a) (k + 1)v - kv + lv

b) k(u + v) - ku + kv

c) (kl)v - k(lv)

d) lv - v
Theorem. If the operations <+> and <x> in the universal

image algebra are restricted to images in V - IA , A fixed in

S, then the resulting structure is a module over I.
Proof. We need to verify the properties constituting the

definition of a module.

Ml) By construction, <+> is closed. Moreover, (V, <+>) is an

59



Abelian group by inducement.

M2) For any t in I and f in V, tf lies in V since

tf - E(t, Al <x> f

a) (s+t)f - (s + t)A <x> f - (sA <+> tA ) <x> f

- (sA <x> f) <+> (tA <x> f) - sf + tf

where the distributivity of <x> over <+> is
justified by inducement.

b) t(f <+> g) - tA <x> (f <+> g) - (tA <x> f) <+>

(tA <x> g) - tf <+> tg

C) (ts)f - (ts)A <x> f - (tA <X> sA ) <x> f

M tA <x> (SA <x> f) - t(sA <x> f) - t(sf)

where the inducement justifies the use of the associative
law with respect to <x>.

d) if - 1A <x> f - f

To state the next theorem, we require the definition of an

associative algebra. V is an associative algebra over the

field K if

Al) V is a vector space over K.

A2) For all u, v in V, uv lies in V and

a) (u + v)w - uw + vw

b) w(u + v) - wu + wv
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c) t(uv) - (ku)v - u(kv), for any t in K

d) u(vw) - (uv)w

If (d) does not hold, then V is called a nonassociative

algebra.

Theorem. If the operations <+> and <x> in the universal

image algebra are restricted to images in V - IA , for A a

subset of S, and for I a field, then the resulting structure

is an associative algebra over I.

Proof. The theorem follows at once by range inducement. For

instance, note that For A2 (c),

t(f <x> g) - tA <x> (f <x> g) - (tA <x> f) <x> g

- (f <x> tA) <x> g - f <x> (tA <x> g)

- f <x> (tg)

As an example of a situation where the previous theorem does

not apply, consider multi-spectral imaging. If X is fixed to

a specific set of pixels, the restriction is a module over

the grey value set Rn; however, it is not a vector space and

is therefore not a nonassociative (or associative) algebra.

In the primary digital image algebra, the domain set is

ZxZ. In order to process images defined on spatial, or

higher dimension points, Zn must be considered. The space of

images is then

AcZ

where R is the real field. In this setting, each grey value

is of the form f(x1, x2 ,...,xn). For such images the

existential operator takes the form

E(t, A) - tA ,
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where, for any point (x1, x2 p..., xn) in A,

tA(xl#, x2 0..., xn) - t.

The parameter extractor is defined by

G(f) - f(O, 0,.. 0)

and the domain extractor is the usual K(f) - OA' where A is

the domain of f.

Since the range space is R, the range inducement follows

the customary pattern. For instance,

(f <+-> g) (x1 , x2 '?.... Xn)

-f(x 1,* X2 0...# xn) + g (x1,p

X2 0'., Xn)

For n > 2, the domain inducement is much more complicated

than in the case n - 2. Essentially, the problem lies with

the transformation-group structure of Zn. For instance, in

the case n - 3, images are of the form f(x, y, z) and we have

the following domain induced mappings holds true

(T; i, J, k)(f)(x, y, z) - f(x - i, y - j, z - k)

(N1)(f)(x, Y, Z) - f(x, Z' -Y)

IN2 )(f)(x, y' z) - f(y, z' x)

{D1 )(f)(x, Y, z) - f(-x, y, Z)

(D2 1(f)(x, y' z) - f(x, -y' z)

[D3)(f)(x, y' z) - f(x, y' -z)
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For multi-spectral images whose grey values are m-vectors in

R and whose pixels are elements of Zn, the previous domain

space analysis can be applied to the original multi-spectral

case in which images were defined on points of ZxZ. Since

the conjunction of the two cases is straightforward, the grey

value is of the form

f1 (xl, x2 ,..., xn)

f2 (xl, x2 1 ..., xn)

where (xl, x2,..., Xn) is an element of Zn.

Other settings are possible; however they are similar to

those already introduced and will be given herein. As
mentioned at the outset of the section, the domain set S is a

transformation group and the range set I is a lattice

commutative ring with identity that possesses a partial

multiplicative inverse operation.
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SECTION V

ARTIFICIAL INTELLIGENCE FOR IMAGE ALGEBRA

1. THE ARCHITECTURAL TOPOLOGY OF AUTOMATED IMAGE ALGEBRA

ALGORITHM DEVELOPMENT

The integration of artificial intelligence and expert

system technologies, with the image processing algorithms

development has been ad hoc and at this time is not a well

defined process. There appears to be no clear direction or

approach currently being pursued to either analyze image

processing algorithms for their constitutent components and

embedded expertise or to elicit from image processing

experts, their strategies for effective image processing

(pattern recognition, classification, detection, etc.).

Further, even if the component pieces characterizing expert

image processing could be formalized and represented, their

interaction and reintegration into decisive new algorithms in

at least a semi-automated way requires further research and

development.

The thrust of this section is to clearly identify the

necessary architectural topology of an automated image

processing algorithm development process based upon the image

algebra. Architectural topology refers not only to the basic

building blocks of the process and their interconnections but

to the degree of closeness and connectivity of the

technologies underlying the automated algorithm development

process. With surh a patterned architectural approach, the

reasoning strategy underlying automated image processing
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algorithm development will become evident. Feed back and

fine tuning during the algorithm development process will

then be seen to be the sufficient condition for the final

design of decisive solutions to the automated target

detection, classification, recognition, and decision problem

of algorithm development. The final demonstration of the

ability of an automatically generated algorithm will, in

general, require running it against classified data. various

other aspects in developing the total capability of the

algorithm generator will of necessity be of a classified

nature; for example, the interview of certain image

processing experts.

The starting point for the elaboration of the underlying

technologies involved is the newly emerging field of

knowledge engineering. The perspective of this section is

that knowledge engineering is distinct from artificial

intelligence in that it is a branch of systems engineering

which utilizes aspects of computer science in the overall

process of engineering intelligent systems. As such,

knowledge engineering utilizes expert systems technology in

addition to bringing other scientific disciplines to bear on

the problem, namely, cognitive and systems science and the

scientific and engineering disciplines underlying pattern

recognition, classification, detection, and other aspects of

image processing.

Knowledge engineering of the image processing algorithm

development process must consider such problematic issues as

multilevel expert systems, knowledge and metaknowledge

elicitation from experts, knowledge engineering of coherent

collections of methodological tools as they appear in the

literature, and the implementation of expert knowledge in

specialized hardware and software architectures. With

respect to image processing specifically and integrated

signal processing in general, the role of neural net model

based computing architectures must be considered (parallel
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array memories). Additionally, recently explored rigorous

unified mathematical structures for both domain independent

expert based systems and image processing algebras and

algorithms must be integrated in a clear way by the knowledge

engineering process.

Fundamental results developed by authors and
co-researchers in the area of multilevel expert systems and

knowledge engineering (References 4 through 15) have led to

new paradigms for interfacing expert systems with relatively

unsophisticated users. These results have also pointed the
way to potential hardware synthesis of expert systems.

Research into both cognitive and system modelling have led to

the discovery of primitives which are the basis for

formalization of knowledge engineering elicitation

techniques. These primitives are perceived to be fundamental

in the architectural framework for semi-automated knowledge

elicitation modules to be used in developing knowledge bases

for multilevel expert systems involved in automated image

processing algorithm development. The discovery of these

principles has significantly increased the possibility for

the actuation of a high level research and development

facility for the automated design of target
detection/classification algorithms and autonomous target

recognition systems. Of paramount importance is the

development of the capability to elicit the strategy from

expert algorithm designers and/or algorithms that experts

have designed. Further research and development is needed on

these techniques which are capable of both eliciting and

reproducing the expert's strategy.
The remainder of the section concentrates on two aspects

of designing a facility for automated image processing

algorithm development. The first is knowledge engineering as

developed by the authors and co-researchers. The second is

the architectural topology and research and development
philosophy of a facility designed to bring the full potential
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of the emerging field of knowledge engineering and allied

technologies to bear on the problem of increasing the

performance and impact of image processing based weapon

systems and the effectiveness of associated personnel. It is

essential that both aspects of the problem be taken into

consideration and integrated. In general, state of the art,

sophisticated systems have a human being in the loop.

2. KNOWLEDGE ENGINEERING FOUNDATIONS FOR IMAGE PROCESSING

ALGORITHM DEVELOPMENT

Any system is a product of its time. System builders

necessarily operate against a background of competing ideas

and controversies and must also confront the limitations of

their resources. Summarizing experiments and formulating a

simplified theory necessarily involves stepping outside of
this rich historical process and committing oneself to a
vantage point with a high possibility of success.

This report links the results of research investigations

into the morphology and operational methodology of knowledge

engineering to image processing specifically, and more

generally to other technologies. Basically, an inductive

modelling approach to establishing a foundation for knowledge

engineering has been pursued which results in the recognition

of three distinct areas of expertise as being fundamental for

the scientific development of knowledge engineering. These

areas are knowledge elicitation, knowledge formalization, and
knowledge representation.

Each area has a distinct collection of fundamental

knowledge, methodologies, organizing principles and

presuppositions associated with it. It is the union of these

areas individually in addition to transformational procedures
from one area to the other which appears to constitute the
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field of knowledge engineering. This defining perspective of

knowledge engineering will be shown to be both pragmatic and

an appropriate consequence of a natural growing convergence

between psychology, systems theory, cybernetics and computer

science. It is essential that the distinction between

knowledge formalization and knowledge representation be made.

Knowledge formalization has to do with the conceptual

organization and structuring of knowledge whereas knowledge

representation deals with the form in which the computer

implementation of the knowledge takes place.

The growing convergence between psychology, systems

theory and computer science disciplines have interacted in

such a way as to become major mutual influences on one

another's developments. The cognitive psychology paradigm is

based on information processing concepts applied to human

behavior (References 16 and 17). General systems theory

(Reference 18) and cybernetics (Reference 19) are based on

modeling the organism/person as an information processing

entity. Fifth generation computers (Reference 20) offer

natural human-computer interaction using techniques of

knowledge processing derived from artificial intelligence

studies in computer science. (Reference 21)

There are compelling reasons for the decoupling of

knowledge elicitation, formalization, and representation

which will be given shortly. In a recent paper delimiting

expert systems (Reference 22), Gregory points out that there

is a fundamental difference between an expert system designed

for diagnosis versus one designed for operational planning.
In the latter case the possibility of the environment acting
as a conscious agent in competition with the expert system

must be considered. This requires that the capability to

create a template, a morphological grid, which can be imposed
on a problem for successful solution with the resources

available to the knowledge based system be developed. The
type of information needed to solve this kind of problem is
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essentially system theoretic and cybernetic in nature.

The use of different perspectives of the domain must be

incorporated in the knowledge base. A cybernetic

representational system must be able to compute similarity,

distinction, and conflict and to facilitate the resolution of

conflict and ambiguity when it arises (Reference 22). It is
precisely these types of computational measures which are

currently being researched and developed in system science,

mathematics, engineering and philosophy (References 4, 23,

24, 25, 26, 27, 28 and 29). With the potential for

formalizing the meta-thinking of an expert (i.e. higher

order domain independent reasoning but not necessarily

category independent) present in the current formulations of

the system theorist Klir (Reference 4), the decoupling of
knowledge formalization from knowledge representation becomes

even more desirable. The role of morphology ( Reference 30

as a knowledge formalization tool is another area which is
applicable to the foundational frame proposed (Reference 8).

However, image processing specific methodology must

still be elaborated. These methodologies must give the

knowledge engineer a particular context within which an

expert's statement is to be analyzed. A knowledge engineer
must be trained to respond to both the form and content of an

expert's statement.

The derived and developed definitions of form and

content are the definitions of deletions, lack of referential

indices, unspecified verbs, nominalizations, universal

quantifiers, modal operators, cause and effect, etc.

In this section the specific procedures involved in the

elicitation of image expert knowledge are outlined in

principle. The methodology of fine tuning, and further

elaboration on research advances in the application of the
knowledge elicitation phase of knowledge engineering is

beyond the scope of this work.

The following commentary is given in brief form to
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convey the essential elements of the communication skills of

a knowledge engineer. The full requisite variety of the

communication in the sense of Ashby (Reference 31), Bandler

(Reference 32), Bandler and Grinder (Reference 33 and 34),

Klir (Reference 4), and Reese (Reference 10 and 11) is almost

impossible to communicate by the written word unless one gives

special attention to the nuances of wording and non-verbal

communication.

ELICITING INFORMATION

Expert Knowledge Engineer Content

*Deletion

A statement with excluded or missing referent.

"I erode." What is it that you deleted
erode? information

"I'm not quite About what? deleted
sure." information

Both of these statements taken independently are examples of

deletion. If however, they were taken as sequential dialog,

experienced knowledge engineers trained in the techniques of

Neutral Linguistic Programming (NLP) would alter their

elicitation strategy when a question directed towards

reconnecting the expert with their underlying reality

experience failed and elicited a statement of the same form

(deletion). Understanding that some of the presuppositions

of a field may also be operational organizing principles in

that they direct the methodology within context, the

particular sensory channel in which the expert is

experiencing difficulty in accessing information must be
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determined. Consider the following interchange.

"I erode." What is it that you deleted
erode? information

"I'm not quite sure."

Obviously, the expert is having difficulty accessing the

desired information. It is assumed of course that the

knowledge engineer is pacing the expert and has not broken

rapport.

"I'm not quite sure." How, specifically, do sensory
you know you are not chann-l
sure? of

difficulty

"It's not clear to Can you show me an deleted
me." example of what you information

you erode? within
sensory
channel

This last example shows that a how question directed at the

appropriate time in attempting to restore a deletion can

yield the sensory channel in which the access difficulty is

being manifested by the expert. Once determined, the

knowledge engineer can return to the job at hand. Without

further comment at this time, the sensory based information

channels used by the expert can also be determined by

knowledge elicitation techniques which are designed to yield

information from the non-verbal communication (behavior) of

the expert.

Other examples of deletion which are encountered with

image processing experts and are of a slightly different

nature are those which involve a deletion of either a

principle of evaluation or the elements from which the
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principle is derived. This is a principle of basic set

theory where a class is defined by either a principle or

enumeration of the class.

"This is a better Better than what defining
approach." other approaches? principle

or used
By what criteria?

"Convolving images By what criteria? defining
is best in this Compared to what? principle
case." used

*Lack of Referential Index

A statement with an unspecific noun or pronoun.

"It is the most Specifically, which specific
important part of part is the most reference
the image which I important?
look at first."

"They give me the who exactly? specific
specifications." person(s)

*Unspecified Verbs

Verbs not specific with regard to the underlying process as

to how, when, where.
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"Dr. Matheron How?, When?, Where? specific
taught L.e how to reference to
do this." underlying

process

"I intuit the right How, specifically, does specific
move when I design your intuition work in reference to
the algorithm." this case? underlying

process

In response to questions of how?, the expert may respond with

a complex equivalent of the unspecified verb which requires

further knowledge engineering analysis.

Nominalization

An active ongoing process is made static by conversion

of a verb into a noun.

"First, I get How could the reestablish
foreground foreground dynamics of
backing." back you? action

"The critical issue How do you reestablish
is pixel traversal traverse the dynamics of
in the image." pixels? verb action

"We use operational How do you reestablish
imaging." operationally image? dynamics of

verb action

Limits of the Expert's Model of Knowledge

Universal Quantifiers
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Statements that preclude exceptions or alternatives by

using generalizations of an all or nothing nature. The

strategy is to elicit an existential quantifier.

"We never use Never? Has there ever exception
heuristics." been a time or place or counter-

when ...? example

"We have a rule All subimages? Is there exception to
that all subimages ever a situation when ..? rule
of the image are special case
checked." rule

Modal Operators

A statement which involves modal operators of necessity,
sufficiency, possibility, etc. These sentences have the

potential for rich logical structure and within the context

of knowledge engineering require the introduction of

questioning techniques that elicit measures of uncertainty,
conflict, chaos, etc. In this report only the modal operator

of necessity is treated from an NLP perspective. Basically,

the response of the knowledge engineer will be of two types.

I What stops you? ' is intended to elicit past experience

that supports the modal operator and ' What would happen

if...? is intended to place the expert in the future to
examine possible consequences of replacing the modal

operator.
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"I can't use that What stops you? past
feature in this experience
image."

What would happen if possible
you did? outcomes,

consequences

"I have to use What will happen if possible
a smaller kernel you don't? outcomes,
for prediction." consequences

What stops you from past
using a larger kernel experience

Semantic Ill-formedness

Statements in this class are essentially statements of

belief for which the underlying experiential data supporting
the belief is missing. When questioned, these beliefs either

have no basis, have a basis which the knowledge engineer then
knows, or are of the form of judgments unique to the expert's

experience but not necessarily supported by other expert's

experience.

Mind Reading

An assumption on the part of either the expert or the

knowledge engineer that the other individual "knows" what is

being thought or felt without direct communication.
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"I'm sure you can How, specifically, can complex
see how I analyze you be sure I see how equivalent
the image." you analyze? of source of

information

Cause and Effect

Statements which contain a belief that a specific action
on the part of one person causes a specific response in

another" person. The knowledge engineer questions how does X
cause Y. Note that cause and effect beliefs for all other

cases is preferably handled under the category of eliciting

information, specifically through the use of an unspecified

verb.

"You are frustrating How do I frustrate you? complex
me during this equivalent
elicitation of action
process."

"His elicitation How dces his elicitation imagined
process threatens process make you feel action
me." threatened?

Lost Performative

Statements from the expert's model of the world which

are projected as actual facts about the world. These may be

statements which are not agreed to by all experts in the same

field as being an actual fact about the world.
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"Convolution is How do you know? source of
the only good According to whom? opinion or
way to find For whom? strategy
features.

"This is the only :. w do you know? source of
way an expert in According to whom? opinion or
imaging works." strategy

The knowledge engineer monitors the expert's reasoning

strategy by keeping track of the current type of knowledge

structure the expert is accessing (source, data, behavior,

structure) and either anticipating or eliciting the next node

in the strategy and the methodology used to get there. The

knowledge engineer can anticipate the path to be followed

based upon the type of problem the expert is trying to solve.

At the highest level the authors identified several generic

problem solving strategies typically handled by experts.

3. ARCHITECTURE RESEARCH AND DEVELOPMENT PLAN FOR A FACILITY

FOR AUTOMATED IMAGE PROCESSING ALGORITHM DEVELOPMENT

In the previous sections of the report, a foundation for

the process of knowledge engineering was formulated. This is

a prerequisite for a managed, scientific approach to

automated algorithm development in any field. Current

approaches are ad hoc, attempting to improve heuristics, gain

insight, etc. with no structured approach. The consistent

development of cost effective, intelligent weapon syrtems,

whose intelligence performance exceeds performance

requirements, requires knowledge engineering not shot in the

dark "artistic" breakthroughs; although, they are appreciated

when they occur.
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A knowledge engineering approach is always looking

towards the future for new developments in the underlying

sciences on which knowledge engineering is built. For

example, current approaches to knowledge representation

include if-then rules, frames, semantic nets, finite state

automatons, etc. However, in the not too distant future,

knowledge will be represented in neural model networks. Even

now, the first cousins of these neural net models are being

patented: the PAM (parallel array memory) boards. A

knowledge engineering approach to automated image processing

algorithm development aggressively pursues the latest

information in the cognitive, system, and computer sciences.

An ad hoc approach takes a more experimental perspective.

The following is a design for an effective, efficient

facility for the development of intelligent weapon systems

basid upon the premise of a knowledge engineering approach to

automated image processing algorithm development. Note that

in principle the design would encompass integrated signal

processing (vision, sonar, kinesthetic sensor, etc.). In

each of the groupings outlined, there is a current body of

knowledge and a research and development program as well as a

protyping component. The full discussion and elaboration on

the complete facility is well outside the q:ope of thi

report.

4. FUNCTIONAL PRIMITIVES FOR AN INTELLIGENT SYSTEM CENTER

The following functional decomposition of an Intelligent

System Center into two laboratories and their constituent

working groups is based upon a analysis of what has • be

done in order to produce intelligent weapon systems, within

current resources, reasonable cost,
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and with a high probability of success.

INTELLIGENT SYSTEM CENTER

Knowledge Engineering Laboratory

Knowledge Elicitation Group

* Elicitation of Knowledge Source
& Strategies

**Human Experts
**Literature
**Other Life Forms

Knowledge Formalization Group

* Formalization of Knowledge Source
& Strategies

**Basic Xnowledge Structures
**MetaKnowledge Structures and the MetaHierarchy
**Categories of Knowledge Structures
**Strategies
**MetaStrategies
**Uncertainty Criteria for Decision

(probability, possibility, theory of
evidence, min/max entropy, etc.

**Reconstructability
**Morphology
**Logic

Knowledge Representation Group

* Knowledge Representation in Varied Modalities

h*Rules, Semantic Nets, Frames
**Inference Engines
**ADA based GST Frames
**MultiLevel Representations
**Automata
**Neural Networks
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**Cellular Models

**Submodalities

Advanced Technology Transfer Group

* Identification and Transfer of Sources of Knowledge
to the Knowledge Engineering Center

**(interdisciplinary consulting group)
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INTELLIGENT SYSTEM CENTER

Intelligent System Prototype Laboratory

Intelligent System Software Engineering Group

* Software Engineering of Intelligent Systems

**ADA based Expert Systems
**Experimental Expert Systems
**On Board Expert Systems
**Neural Net based Expert Systems

Integrated Signal Processing Group

* Signal Processing Algorithm Development &
Performance Evaluation

**Image Processing
**Sonar Processing
**Select Band Limited Processing

Advanced Physical Architecture Group

* Functionally Specific Hardware Architectures

**Distributed RISC computers
**Parallel Array Memory Boards
Neural Net Architectures

**Optical Computing
**Sensor Interfacing

Intelligent System Engineering Group

* System Engineering of Intelligent Prototypes from
Knowledge Elicitation Stage through Synthesis of
Intelligent Prototype

**Workload, Capacity, Performance and Service
Requirements

**Workload Characterization
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**Capacity Planning
**Feasibility of Functional Synthesis
**Benchmark and Test Evaluation
**Feedback and Fine Tuning

As indicated previously, the complete elaboration in detail

of how these two centers would operate and interface within

the Intelligent Systems Laboratory and the necessary

resources to bring them to fruition are outside the scope of

this report. However, in order to clarify to some degree the

types of work carried out, the following sample of work items

is listed. Obviously, the actual work content is far more

extensive and detailed and is known in principle:

a) Work items:

(1) The transfer of multilevel expert system technology

to the field of image processing

(2) The hardware design of an image processing computer

based on image algebra concepts developed by the

Singer Corporation.

(3) Investigation of extensions of image algebra concepts

to form complete instruction sets for functionally

specific image algebra computers.

(4) The design of a standard operating environment for a

fully automated multilevel expert image processing

algorithm development facility. This ADA based

standard operating environment is based upon a

distributed architecture.
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(5) The back end level of the expert system consists of:

o functionally specific image processing computers

whose instructions sets are precisely the

primitive operators of image algebras

o a library of macro transforms and control

structures to implement the image processing

functions. These functions can later be

implemented in hardware in the distributed

architecture. As parallelism and functionality

emerge from elicited strategies and from

monitored usage of image processing programs

(monitoring to be done in the front end), this

will induce the design of the distributed

architecture of the back end.

(6) The front end level of the expert system consists of

an expert system incorporating problem solving

expertise of human image processing experts and the

communication mechanisms necessary to interface with

the image algebra computers in the distributed

architecture.

(7) Development of elicitation strategies and techniques

to extract expert strategies from image processing

programs and from the image processing experts

themselves. Eventually research and development in

this area should lead -i an automatic knowledge

elicitation expert system module incorporated into

the image processing facility. This module will

allow the expansion of the knowledge base by

interviewing experts and analyzing samples of their

algorithm designs.
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(8) Elicited strategies will be incorporated into the

front end of the image processing expert system using

mathematically rigorous methods of metaknowledge

representation. These methods are currently being
researched by the authors and co- researchers.

(9) Analysis of current image processing algorithms and

more complex image processing programs based on

specific sets of image processing algorithms. These

analyses are to be carried out in several modes
including a complete translation to image algebra

machine primitives. The latter will aid in further

research into the design of control instructions for

the image algebra machine.

(10) A thorough investigation of the use of measures of

uncertainty in target detection/recognition

algorithms. These measures are based upon entropy,
probability, possibility, and the theory of evidence

as well as fuzzy set theory. If measures of

uncertainty are a part of an image processing

expert's stategy, they will be elicited and

incorporated into the front end of the multilevel

expert system. If they are not, further research

into new target detection/recognition algorithms

utilizing measures of uncertainty should be

initiated. Results from reconstructability analysis

developed in general systems theory should be quite

useful here.

(11) The transfer of technology from various disciplines

to benefit automatic target recognition algorithm

development. Typical areas to be transferred include

stereology, syntactical recognition procedures,

mathematical morphology, random geometry,
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constructive function theory, and potential theory,

among others.

(12) Deep research into totally innovative methods of

formalizing, representing, and solving time critical

target recognition problems. Innovation here means
exploring abstract areas of mathematics generally

unaccessible via traditional engineering approaches.
Research directions in this area have been motivated

by successful development of image algebras by

researchers. Potentially, results from this research
may lead to distinct machine architectures such as

data-flow, systolic, and wave-front array processors

being applied to difficult autonomous target

recognition problems.

(13) Research and development of adaptive signal

processing techniques in conjunction with measures
based upon statistics and uncertainty principles.

As a specific example of the type of output of one of the
groups in the knowledge engineering center, the knowledge

elicitation group, the following preliminary list of
rules was generated. These were based on a review of an

introductory presentation on image processing algorithms

given by Dr. Benjamin M. Dawson, Department of Brain

and Cognitive Sciences, Massachusetts Institute of
Technology. It is important to realize that this
presentation was intended as an introduction to image

processing. Again, these rules represent the information

given in the presentation, no more, no less.

b) Knowledge Based Automated Image Processing Algorithm

Development Rules
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(1) Classification of rules

Categories of image processing algorithms: point

proccesses, area processes, geometric proccesses

frame processes, image based versus symbolic methods,

linear versus nonlinear, knowledge level used,

knowledge about pixel structures.

(2) Goals of rules

Improve appearance, highlight information,

measurement of image elements, classification or

matching of image elements, recognition of items in

the image.

Image measurement makes few assumptions about

elements in image. Classification and recognition

require successively more knowledge about what can

appear in the image. Knowledge level used in an

algorithm can range from simple assumptions about the

physics of image formation to specific world

knowledge about possible items in the scene. Note:

Most image processing algorithms are compounds of

other more primitive algorithms. Therefore, a

knowledge of which algorithms to apply and in what

order to apply them in order to reach a processing

goal (classification by goal).

(3) Preliminary rules

(a) PERFORMANCE: If image transformation is a point

process then use look up table for computational

efficiency

86



(b) CONTRAST: If image is to be brightened

(darkened) then add (subtract) to (from) pixel

value.

(c) CONTRAST: If shading is to be corrected or pixel

values to be smoothly changed in an area then

estimate the shading functions and use point

process with pixel location that computes the

inverse of the shading function to eliminate

(correct) the shading.

(d) CONTRAST: If contrast of areas is to be

highlighted or adjusted then smoothly change the

pixel values in the area.

(e) CONTRAST: If contrast at center of image is to

be increased and edges to be faded then

pixel-out-value -
pixel-in-value*k*exp(-(x*x/l+y*y/l))-m

where k,1 and m are constants which adjust the

extent and amount of change and x ranges from
-xsize/2,xsize/2 and y ranges from

--ysize/2,ysize/2.

(f) CONTRAST: If simple contrast enhancement is

desired then generate intensity histogram, clip

histogram on hi/low criteria, set up point

process to set pixels below low criteria to 0 and

above high criteria to 255. All other pixels are

multiplied to increase their value so that they

span the range of 0 to 255.
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(g) OUTPUT: If a raznge of monochrome pixel values is

to be highlighted then use pseudocoloring.

(h) AREA PROCESS: If it is desired to remove noise,

reduce blurring, smooth an image, perform object

detection by matching images, measure image

properties, determine object edges, perform

spatial filtering, then area processing is used.

(i) CONVOLUTION: If spatial filtering is required

then perform convolution.

(j) CONVOLUTION: If finding image features then

perform convolution.

(k) PERFORMANCE: if convolving an area of size X by

Y with a kernal of size n by m then performance

is X*Y*n*m multiplies and adds.

(1) PROBLEM: If using recursive or infinite response

filter then it is difficult to understand or

predict filter response.

(m) PROBLEM: If convolving then border may be

unintelligible.

(n) IMPLEMENTATION PROBLEM: If convolving then pixel

value resolution level may overflow or underflow.

(a) IMPLEMENTATION SOLUTION: If values overflow,

then scale result.

(p) IMPLEMENTATION PROBLEM: If using convolution

then there are implementation issues.
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(q) IMPLEMENTATION PROBLEM: If area processing is

being performed then there is a high likelihood of

encountering issues of both internal accuracy and

interpretation at edge of image.

(r) META KNOWLEDGE: If applying convolution then use

it as a matched filter or spatial filter.

(s) META KNOWLEDGE: If using a matched filter then

convolution kernel is essentially a small image

of what is to be detected or amplified.

(t) CHARACTERIZATION: If an edge exists then there

is a sudden increase or decrease in image

intensity.

(u) DETECTION: If attempting to perform vertical

edge detection then use convolution (correlation)

kernel

-1 0 1
-1 0 1
-1 0 1
-1 0 1
-1 0 1

followed by a yes/no decision based on threshold

point. If attempting to perform horizontal edge

detection then use convolution (correlation)

kernel

-i -i -1 -i -1l

0 0 0 0 0
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I I I

followed by a yes/no decision based on threshold

point.

(v) METAKNOWLEDGE: If searching for a pattern then

use convolution kernel "Kernel Pattern" followed
by a yes/no decision based on pattern criteria.

(w) SOLUTION: If selection of high spatial

frequencies is desired then use kernel

-- 1 -1
-1 8 -1
-1 -1 -1

(x) CHARACTERIZATION: If edge exists then it has

high spatial frequency.

(y) SOLUTION: If locating higher spatial frequencies

in image is required to be selectively boosted,

then use kernel

I -1 -l -1
-1 9 -1

S-l -l -l

This may cause image to look sharper and noisier

(z) If kernel matches lower spatial frequencies then

image blurs or smooths.

(aa) If a certain band of frequencies is to be

selected and detected then build a kernel that

selects that frequency. The art of convolving is

in choosing the kernel with the proper frequency
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characteristics.

(ab) If a better signal-to-noise ratio is needed for

detection of image elements or detection of

features with less computation, then consider

nonlinear area processes.

(ac) If strength and orientation of edges in image is

rough then use Sobel operators.

(ad) If Sobel operators are applied then use intensity

for edge strength and color for orientation in a

two dimensional display.

(ae) If Sobel operators are employed they are a form

of first derivative (oriented) edge finders.

(af) If employing Sobel operators, the two kernels X

and Y are

-1 0 1 1 Y 1 2 1
X: -2 0 2 Y: 0 00

-1 0 1 -1-2-1

Then
.0.5

strength - { X*X + Y*Y J

orientation - arctan{Y/X)

(ag) If machine vision algorithms are being developed

then consider the first step with certainity (x)

to be a Sobel gradient.
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(ah) If using Sobel operators and performance is too

computationally intensive then consider an

approximation of the Sobel kernels.

(ai) If there is spot noise in image then use a median

filter.

(aj) Classification: If determining the constituents

of an element of an image.

Additional knowledge is needed.

(ak) If there is a connected group of pixels with the

same value then the group is an element.

(al) If processing is computationally intense then

booleanize (threshold) tje image, search top to

bottom looking for areas that have more than N

connected pixels.

(am) If thresholding then small spots of noise may be

introduced.

(an) If classifying, record number of pixels in area

and use for further classification.

(ao) If finding all connected pixels in an element

then use a recursive search.

(ap) If image-element classification scheme is desired

use both area and point processes to develop list

of properties for a multi-dimensional space and

partition space to perform the classification.
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(aq) If spatial arrangement of pixels os to be changed

then use geometric processes.

(ar) If image correction for distortion by camera

optics or viewpoint is required then use

geometric processes.

(as) If rotation, stretching, translation or warp of

image is needed then use geometric process.

(at) If geometric transform is employed this

introduces possible gaps between output pixels.

(au) If gaps between output pixels are undesirable

then invert (reverse) the mapping equations and

scan the destination area. At each point of the

destination area use the inverted equations to

fetch a source point. Source points generated by

the inverse map that lie between pixels in the

source area must have their value approximated by

using the value at the nearest source pixel

(possibly producing sudden intensity changes and

a blocky appearance) or by interpolating source

values (yielding smoother results).

(av) If pixel represents a rectangular rather than

square area then compensate by adjusting the

transformation equations.

(aw) If capturing a static image then sum N

consecutive image frames and divide sum by N to

reduce noise introduced by sensor.
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(ax) If noise is gaussian and uncorrelated frame to

frame then improvement in signal to noise ratio

will be of order square root of N.

(ay) If motion detection is needed then subtract

frames to approximate a time differentiation.

A pragmatic knowledge engineering approach to the literature

of pattern recognition, image processing, integrated signal

processing, detection, classification, recognition, etc.,
with the goal of elicitation of rules and context markers for

the use of the various rules and methodologies would be a

first step in organizing and putting together a large
knowledge base which is a precursor to any serious attempt at

automated image processing algorithm development. Along with

this, the elicitation of expert image processing algorithm

developers must be done. Clearly, certain aspects of this

elicitation by the very nature of the work involved must be

classified at a high level.

As an example, in the first case, the list in Table 2 of
image processing transforms was developed during Phase I of

the project in order to elicit the image algebra primitives

and as a basis for which a knowledge engineering approach to

level 3 image processing could be mounted. Some very direct

questions from the knowledge engineering perspective can be

asked.

o In which contexts should each transform be used?

o What is the certainity of the result as a function of the

certainity of the inputs or as a function of the

transform itself?
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o Within categories of transforms, why would one transform

be chosen over others? Which tend to be more robust

independent of context? How is robustness measured?

What are the performance issues and computational

complexity issues? Are backup approximations available?

Can they be generated from a uniform procedure?

o Additional questions from a knowledge engineering

approach to automated image processing algorithm

development are listed below:

What are the naturally occurring sequences of these

transforms across current image processing algorithms?

What are the precedence orderings? When decomposed into

image algebra primitives, what are the naturally

occurring sequences of primitives? When used in image

processing algorithms, what are the decision criteria

associated with post transform application? Are their

default decision criteria associated with the use of

these transforms? What is the criteria by which an

expert chooses the use of one transform over another?

What are the approximations used if performance criteria

are stringent? Which can be rewritten (or modeled) as

neural net applications?
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TABLE 2 IMAGE PROCESSING TRANSFORMS

Alpha Conditional Bisector
Array Grammars
Asynchronous Interaction
Background Subtraction
Bandwith Compression Via Iterative Histogram Modification
Bernstein Polynomial Approximation
Best Plane Fit (BPF, Sobel, Roberts, Prewitt, Gradient)
Boundary Finder
Boundary Segmenter
Chain Code Angle Determiner
Closing (Black and White)
Closure Operation
Connection Operator
Connectivity Number
Convex Hull
Convexity Number
Convolution Transform
Co-occurrence Matrix
Cumulative Angular Deviant Fourier Description
Cue Transform
Digitilization
Dilation (Black and White)
Directional Gradient Transform
Discrete Cosine Transform
Discrete Fourier Transform
Discrete K-L Feature Selection
Discrete Picture Transform
Edge Detection By Gradient
Erosion (Black and White)
Fields Without Interaction (Black and White)
Fourier Feature Normalization
Fourier Features
Frei-Chen Thresholding Strategy
Geometric Correction
Gibbs Ensemble (Black and White)
Gradient Directed Segmentation
Gradient Edge Operators
Grey Scale Correction
Grey Scale Histogram
Grey Scale Transformation
Haar Transform (Haar Functions)
Hadamard Transform (Walsh Functions)
Heukel Edge Operator
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TABLE 2 IMAGE PROCESSING TRANSFORMS (continued)

Hierarchial Edge Detection
Histogram Equalization
Hit and Miss Transformation
Hotelling Transform (Karhunen-Loeve Transform)
Hough Method for Line Detection
Image Coding by DPCM
Intersection Function (Black and White)
Kirsch Operator
Linear Erosion
Linear Filtering
Local Neighborhood Transform
L-U Decomposition
Magnitude Gradien Transform
Markov Random Field (Black and white)
Medial Axis Skeleton
Minkowski Functionals
Moments of Silhouette
Morphological Covariance
Noise Removal by Smoothing
Opening (Black and White)
Parallel Interactive Scene Labeling
Perimeter Estimation by Dilation
Planar Size Distribution
Pyramid
Projection Estimation by Dilation
Quad Trees (and Binary Trees)
Quantization
Random Field
Raster Tracking
Region Growing
Relaxation Labeling
Rotation Invariant Field (Black and White)
Sequential Thinning
Serial Relaxation
Shape Grammars
Simple Boundary Segmenter
Size Criteria
Size Distribution in Length
Skeleton
Skiz Transform (Exoskeleton)
Slant Transform
Spoke Filter
Stacked Image Data Structure
Straight Line Detection by Linear Filter
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TABLE 2 IMAGE PROCESSING TRANSFORMS (CONCLUDED)

Subtraction of Laplacian
Superslice
Superspike
Syntactic Noise Reduction
Template Matching
Template Matching by Cross Correlation
Thickening
Thinning (Morphological)
Thresholding
Transform Encoding
Translation Transform
Tree Grammars
Tree Search Labeling Algorith
Umbra Transform
Variable Sized Hexagons
Walsh Feature Representation
Zucker and Hammel Three Dimensional Edge Operators
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SECTION VI

CONCLUSION

A mathematical environment has been developed which
allows for the expression of various algorithms employed in
image processing. Here, algorithms appear as strings in an

operational calculus, where each operator is ultimately
expressed as a string composed of some collection of elemental,

or "basis" operators. The action of the string upon a
collection of input images is determined by function
composition. Operations such as convolution and dilation
usually determined in a pointwise manner are given as

closed-form expressions in terms of low-level operations of the

algebra.

A unified framework for the orderly expression of the

diverse algorithms that play roles in image analysis has been
given. Indeed, it provides a theory behind the block diagram
technique which serves as a universal language in which
investigators from diverse backgrounds may find a common

understanding.

The view taken herein is that images are part of a

function space. Once the function space is specified, the
determination of the desired algebra depends on the collection
of operations we wish to induce from the structure of the

domain and range spaces. In digital image processing, the
domain space is usually considered to be the integral lattice

ZxZ, while the range space is either the set, R, of real

numbers or the set, Z, of integers. Of significance is that
when the underlying problem of algebra development is viewed

from the appropriate perspective, the particulars of the

subject matter involved are of minor importance; rather, it is

the methodology of development that is paramount.

99



Advanced Artificial Intelligence and knowledge
engineering research have been presented with the goal of
introducing a structured approach to the development of
intelligent weapon systems in general and to automated image
processing algorithm development specifically. Current
interest in level 3 image processing (integration of knowledge
and intelligence into image processing algorithms) dictates a
cost effective approach with high probability of success.
Emerging results in knowledge engineering, cognitive science,
system science, and computer science appear to indicate that a
formal approach to the engineering of intelligent systems in on
the horizon. The design of an intelligent system laboratory is
recommended and an initial outline of such a facility is
given. Research, development, and prototype support for such a
facility is highly recommended.
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